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ABSTRACT 
Computationally identifying transcription factor binding sites in 
the promoter regions of genes is an important problem in 
computational biology and has been under intensive research for a 
decade. To predict the binding site locations efficiently, many 
algorithms that incorporate either approximate or heuristic 
techniques have been developed. However, the prediction 
accuracy is not satisfactory and binding site prediction thus 
remains a challenging problem. In this paper, we develop an 
approach that can be used to predict binding site motifs using a 
genetic algorithm.  Based on the generic framework of a genetic 
algorithm, the approach explores the search space of all possible 
starting locations of the binding site motifs in different target 
sequences with a population that undergoes evolution. Individuals 
in the population compete to participate in the crossovers and 
mutations occur with a certain probability. Initial experiments 
demonstrated that our approach could achieve high prediction 
accuracy in a small amount of computation time. A promising 
advantage of our approach is the fact that the computation time 
does not explicitly depend on the length of target sequences and 
hence may not increase significantly when the target sequences 
become very long.  

Categories and Subject Descriptors 
I.2.8 [Computing Methodologies]: Artificial Intelligence – 
problem solving, control method, and search. 

General Terms: Algorithms, Experimentation. 

Keywords 
Genetic Algorithms, Motif finding, Transcription factor. 

1. INTRODUCTION 
Transcription factor binding sites are short sequence fragments in 
the promoter regions of genes. These short fragments, however,  
play important roles in gene transcription processes. Specifically, 
the transcription process is initiated when protein molecules bind 
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to the upstream region on these binding sites. On the other hand, 
the transcription process might be inhibited when other competing 
molecules interact with these binding sites on its upstream region. 
Accurate identification of these binding sites is thus important and 
may facilitate the understanding of the biological mechanisms 
involved in the transcription regulating processes of a gene. 
Experimental methods, such as DNase foot-printing [4] and gel-
shift assay [5] remain the most accurate and reliable identification 
methods, but they are time-consuming and expensive.  Alternative 
approaches that can efficiently predict the locations of binding 
sites with high accuracy are thus highly desirable due to the large 
amount of sequencing data that have been accumulated during the 
past decade.  

Homologous genes often have similar transcription factor binding 
sites. It is thus possible to identify the transcription binding sites 
for a set of homologous genes by comparing their upstream 
regions and searching for the parts that have the maximal identity 
in sequence content. Computationally, the difficulty arises from 
the fact that the locations of the binding site can vary significantly 
on the upstream regions of different homologous genes. Searching 
all possible combinations of starting locations is impractical and 
requires exponential computation time. To avoid the exhaustive 
search, many computational tools have been developed to identify 
the common binding sites of homologous genes based on the 
stochastic Gibbs sampling algorithm, such as AlignACE [13], 
BioProspector [11] and Gibbs Motif sampler [10]. Initially, the 
Gibbs sampling programs randomly select one motif element in 
each sequence. The programs then run through two steps: the 
predictive update step, updating the background and the motif 
matrix based on motifs selected, and the sampling step, in which 
each starting position for a motif in the given sequence is assigned 
a probability. A motif element is then assigned to that sequence by 
performing a weighted sample from all the possible starting 
positions. These steps are iterated until a local maximum is 
reached or a maximum number of iterations are made. To avoid 
becoming trapped in a local maximum, the whole process is 
usually restarted several times with a different seed. Other 
deterministic approaches introduced heuristics into their 
algorithms to reduce the computational time. For example, 
Consensus [7] uses the greedy algorithm to find the binding sites 
on one sequence at a time. Bailey and Elkan use an EM-algorithm 
to find a maximum likelihood estimate of parameters in a similar 
statistical model [1]. These approaches are practically useful and 
have significantly reduced the computation time needed for 
binding site prediction. However, the prediction accuracy is not 
satisfactory and far from the expectation of biologists.  

Genetic algorithms (GAs), like Gibbs sampling, apply a stochastic 
optimization technique, but operate on a population of candidate 
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solutions to a specific problem domain. Specifically, the 
structures in the current population are evaluated for their 
effectiveness as solutions during each generation.  Based on these 
evaluations, a new population of candidate structures is formed 
using operators like crossover and mutation. This process is 
iterated until an optimal solution is found or no improvement is 
achieved after a significant amount of evaluations [3]. Recently, 
Liu et al. applied a GA to the motif discovery problem, and a 
program called FMGA was developed [9]. They used the general 
GA framework and operators described in SAGA (sequence 
alignment by genetic algorithm) [12]. In FMGA, each individual 
is encoded as a set of candidate motif patterns generated 
randomly, one motif pattern per sequence. The fitness score for a 
single sequence is computed as the best matching percentage of 
all subsequences in that sequence, and the overall fitness score is 
the summation of individual fitness scores for all sequences. They 
manipulated mutations based on the position weight matrices 
(PWM) to maintain the conserved motifs. Additionally, they also 
implemented the crossover with special-designed gap penalties to 
produce the optimal child pattern.  To overcome the problem of 
local optima, they introduced a rearrangement method based on 
PWM. Experimental results showed that FMGA was more 
accurate than Gibbs Motif Sample in terms of motif prediction 
accuracy and needed less computation time when compared with 
the MEME program. Unfortunately the FMGA software is not 
publicly available for experimentation and comparison. 

In this paper, we propose a new genetic algorithm approach called 
MDGA to efficiently predict the binding sites for homologous 
genes. In MDGA, an individual is formed by a set of possible 
starting locations of the binding sites on different homologous 
sequences. The fitness value for an individual is evaluated by 
summing up the information content for each column in the 
alignment of its binding sites. The fitness function penalizes the 
individuals that have lower similarity in the alignment of their 
binding sites and thus eventually selects individuals with highly 
conserved binding sites. We evaluated the prediction accuracy of 
MDGA and our experiments showed that it is capable of 
achieving a higher level of prediction accuracy than approaches 
based on the Gibbs sampling algorithm.  Moreover, experiments 
also showed that the computation time needed for MDGA does 
not explicitly depend on the sequence length and may remain 
unchanged even when the sequence becomes very long. 

The remainder of the paper is organized as follows. Section 2 
describes the proposed approach in detail. Section 3 describes the 
experiments and results. The paper is concluded in Section 4 with 
a discussion of the findings and of future work. 

2. THE PROPOSED APPROACH 
In the proposed genetic algorithm (MDGA), the initial population 
consists of randomly generated individuals.  During the evolution 
procedure, individuals compete for the opportunity to reproduce. 
In the remainder of this section, we present a detailed description 
of the approach. 

2.1 Representation  
An individual is represented by a list of integers that specify the 
starting locations of the motif on all the target sequences. We used 
binary strings to represent individuals where a single starting 
location occupies 16 bits and the binary encodings of all starting 
locations are concatenated to form a single binary string.  

2.2 Population Initialization 
The population is randomly initialized with an integer seed 
provided by the user on the command line. It contains a fixed 
number of individuals (100 in our experiments) during the 
evolution. 

2.3 Fitness 
The fitness function must be able to provide a measure of 
similarity among all motifs defined in an individual.  One of the 
popular measures of motif similarity is called ‘information 
content’ [14]. After all binding sites are aligned, the information 
content for a single column can be computed as follows. 
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where fb is the observed frequency of nucleotide b on the column 
and pb is the background frequency of the same nucleotide. The 
summation is taken over the four possible types of nucleotides. 

We define the fitness score function as the summation of 
information contents of all columns in the alignment, which 
reflects the overall similarity of the sequence segments of binding 
sites defined in an individual.  In particular, for a given 
individual, its binding site motifs can be obtained based on start 
positions of the motif in each sequence and the motif width (W) 
given by the user. Motifs are thus aligned and the information 
content for each column in the alignment can be computed. As the 
last step, we compute the summation of information contents for 
all columns to obtain the fitness value as equation 2.   
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To resolve the computational difficulty that may arise when the 
observed frequency of nucleotide b on the column equals to 0, 
and thus cannot be evaluated, we used pseudo counts as previous 
described in [8]. Based on the notion of pseudo counts, the 
modified f’b and p’b of nucleotide b can be written as follows. 
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where cb and c0b are the observed counts of nucleotide b on the 
column and in the background respectively, db is the pseudo 
counts of the nucleotide b, N is the number of sequences, S is the 
sum of observed counts of all nucleotides in the background, and 
D is the sum of pseudo counts of all nucleotides.  

The ‘phase’ problem arises from the random selection of start 
positions described in [8]. Basically, it states that the prediction 
algorithm may enter and then get locked into non-optimal ‘local 
optima’, which are often shifted forms of the optimal pattern. This 
problem can be alleviated by shifting all starting positions of 
motifs to the left or right by a small number. We adopt this 
technique in our algorithm, and allow the starting location of a 
motif to vary within a small range and the maximum overall 
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information content obtained over the possible starting points is 
taken to be the fitness. 

2.4 Selection 
Each iteration, with a certain probability, two parents need to be 
selected from the population for crossover and generating a child. 
In order to ensure that every individual has a nonzero probability 
to be selected for reproduction, we used the Roulette wheel 
mechanism to choose individuals, where the probability for an 
individual to be selected is its fitness value normalized with all the 
individuals in the population. 

2.5 Replacement Strategy 
The GA used is generational with a generation gap. In each 
generation, a number of individuals equal to half of the population 
are generated. The new individuals are merged into the population 
and the worst one-third of all individuals are eliminated. In the 
implementation 50 new individuals were created in each 
generation, merged with the 100 parents and then the worst of the 
150 individuals were eliminated. 

2.6 Crossover and Mutation 
Two crossover operators, single-point and double-point, were 
implemented and tested in our program. A bitwise mutation 
operator was adopted. Both crossover and mutation occur with 
certain probabilities and can be specified by the user as command 
line parameters. 

2.7 Program Implementation 
We used GAlib2.4.5 (http://lancet.mit.edu/ga) as the platform for 
implementation. The package contains a flexible working 
environment in which users are allowed to vary and experiment 
with almost all the parameter settings. In addition, users can 
implement their own crossover and mutation operators. The 
program MDGA was implemented in C and all related parameters 
were passed as command line arguments. Our experiments can 
thus be automated with several shell scripts. The following is the 
pseudo-code of the MDGA program: 

1.  SET UP Parameters 
SET W = motif width;       

      SET G = maximum iteration number; 
      SET S = shift range; 
      SELECT a crossover strategy; 

2. INITIALISE population with random candidates (vectors of  
                          start positions);  

3. EVALUATE each candidate 
   { 
              DO loop (-S<= i <= S) 
              { 
                    SET all start positions to original start position + i; 
                   OBTAIN aligned motifs based on new start positions,  
                             the motif width W, and input sequences; 
                    SET fitness value = summation of information 
                             contents of all columns;  
                     if (Maximum fitness < current fitness) 
                            Maximum fitness = current fitness  
               } 
              RETURN Maximum fitness; 
     } 

4. REPEAT UNTIL (iteration number = G) 
    { 
               SELECT parents by roulette wheel selection; 
               CROSSOVER parents based on crossover  
                             strategy picked; 
               MUTATE the resulting offspring; 
               EVALUATE new candidates; 
               REPLACE worst individuals; 
    } 

5. OUTPUT predicted motifs and their consensus motif 

3. EXPERIMENTAL RESULTS 
3.1 CRP Binding Sites 
The dataset of cyclic-AMP receptor protein (CRP) consists of 18 
sequences of 105 bps each [15]. Twenty-three binding sites have 
been determined by using the DNA footprinting method, with a 
motif width of 22 [14]. 

To test the performance of the MDGA on different probabilistic 
parameters and crossover operators, we fixed the probability of 
mutation at value 0.01 and varied the probabilities of crossover 
for the single-point and two-point crossover operator. We treat it 
correctly predicted if the start position difference between 
predicted and experimentally confirmed is less than five. On 
average, MDGA achieves the best accuracy when the crossover 
probability is around 0.4 for both crossover operators.  
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Figure 1:  The average number of correctly predicted start 
positions of CRP dataset using different crossover 

probabilities for both single-point and two-point crossover 
operators. For each case, we run MDGA 10 times. 

It is surprising that the crossover probability needs to be much 
less than 1.0 to achieve the optimal average accuracy. In general, 
the crossover replaces an individual in the original population 
with the child generated and thus enhances the exploring ability of 
the algorithm.  However, due to the replacements that result from 
crossovers, the population may deviate from the global optimum 
when the population starts to converge. An appropriate 
compromise between the needs to explore the search space and 
the tendency of converging to the global optimum can thus 
achieve the best performance in terms of accuracy. It is also 
evident from Figure 1 that the single-point crossover operator 
performs as well as or better than the two-point one with all the  
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Table 1: Comparison of the performance achieved by the Gibbs Sampler, BioProspector and MDGA respectively. FP denotes the 
starting locations of the binding site(s) measured with the footprint experiments. A single sequence may contain two binding site 

motifs. GS, BP, GA represent the prediction results obtained with the Gibbs sampler, Bioprospector and MDGA respectively.  
Additional columns of ER follow each of them to show the deviations of the predicted starting locations of binding sites from the 

experimental values. 

Sequence FP GS ER BP ER GA ER
1 17, 61 59 -2 63 2 62 1
2 17, 55 53 -2 57 2 56 1
3 76 74 -2 78 2 77 1
4 63 59 -4 65 2 64 1
5 50 11 -39 52 2 51 1
6 7, 60 5 -2 9 2 8 1
7 42 40 -2 26 -16 43 1
8 39 37 -2 41 2 40 1
9 9, 80 7 -2 11 2 10 1

10 14 12 -2 16 2 15 1
11 61 59 -2 63 2 62 1
12 41 47 6 43 2 42 1
13 48 46 -2 50 2 49 1
14 71 69 -2 73 2 72 1
15 17 15 -2 19 2 18 1
16 53 49 -4 55 2 54 1
17 1, 84 25 24 68 -16 56 -28
18 78 74 -4 80 2 77 1

 
 

crossover probabilities.  This may suggest that the diversity 
introduced by the single-point crossover is sufficient to explore 
the search space of the problem. 

To compare the performance of MDGA to other approaches that 
use the Gibbs sampling algorithm to sample the search space, we 
used MDGA and two other computational tools, the Gibbs 
Sampler and the BioProspector, to predict the locations of binding 
site motifs on the set of 18 sequences. It can be seen from Table 1 
that MDGA outperforms the two other approaches in terms of 
prediction accuracy. MDGA failed to predict the correct starting 
location of the binding site for sequence 17, however, all of the 
three prediction programs failed on this sequence.  Both binding 
sites on sequence 17 may thus have a much lower similarity in 
sequence content to those of other sequences.  

The higher prediction accuracy achieved by MDGA can possibly 
be ascribed to the better sampling and exploring capability of the 
genetic algorithm adopted in MDGA. Compared with a genetic 
algorithm, the Gibbs sampling algorithm explores the search space 
by allowing only one of the variables to vary for a single sampling 
step and thus may fail to correct a strong mistake made initially or 
during the convergence process.    

3.2 YDR02c Binding Sites 
The YDR02c sequence dataset was downloaded from 
http://jura.wi.mit.edu/fraenkel/download/release_v24/fsafiles/. It 
consists of 15 target genes of transcription factor YDR02c 

selected by the Chromatin-Immunoprecipitation-micorarray 
(ChIP-chip) procedure in yeast [6]. The binding site motif pattern 
has not been experimentally confirmed. We used the MDGA 
program with different levels of one-point crossover probabilities 
(range from 0.2 to 0.8) and a fixed motif width of 10. The results 
showed that the consensus motif pattern is “TCCGGGTAAA” for 
the highest fitness function value. The sequence logo for this 
‘best’ motif is given in Figure 2. 
 

Figure 2: The consensus binding sequence for YDR02c as 
predicted by application of MDGA program to YDR02c 
binding regions identified by CHIP-on-chip. The result is 

presented as sequence logo in which height of the letters in bits 
is proportional to their frequency [6] 

 
We also used other motif-finding programs with the same motif 
width. Comparing all motif patterns predicted by these six 
programs, we conclude that all motif patterns are very similar, 
suggesting that all programs could detect motif patterns of this 
dataset in general. Furthermore, we observed that the motif 
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predicted by MDGA is exactly the same as that of the AlignACE 
program, indicating this pattern could be the true motif pattern 
from a statistical point of view (Table 2). 

 
Table 2: Comparisons of the conserved motifs predicted by 

AlignACE, BioProspector, Consensus, Gibbs Sampler, MEME 
and MDGA programs respectively. AlignACE and MDGA 
predicted the same pattern, which is “TCCGGGTAAA”. 

Motif-finding program   Predicted motif 

AlignACE   TCCGGGTAAA 

BioProspector  TACCGGGTAA 

Consensus    CCGGGTAAAA 

Gibbs Sampler  TATTTTGATG 

MEME   GTCCGGGTAA 

MDGA     TCCGGGTAAA  
 

3.3 AZF1 Binding Sites 
The AZF1 sequence dataset was also downloaded from 
http://jura.wi.mit.edu/fraenkel/download/release_v24/fsafiles/. 
The AZF1 dataset contains 24 sequences with variable sequence 
lengths, ranging from 175 to 1228. Earlier literature showed that 
that the consensus motif for AZF1 binding sites is “TTTTTCTT”, 
and it was further predicted as the pattern of 
“TTTTTCTTTTCCTGTTTC” [6].  

We used the MDGA program to experiment with this dataset with 
different numbers of generations. As shown in Figure 3, the 
fitness values are stable when the number of generations is 2000 
or bigger. We compared the motif pattern predicted by the MDGA 
program with the true motif and found that the motif patterns 
predicted by the MDGA program were similar to the true motif 
pattern when the fitness value was greater than 0.0173, indicating 
that 2000 generations was adequate for MDGA to find the motif 
pattern for this dataset. 

 

 
Figure 3: The relationship between fitness value and number 

of generations. The horizontal axis denotes the number of 
generations, and the vertical axis denotes the converged fitness 

values. For each case, we run MDGA 10 times. 

 
Although the accuracy of prediction is the most important issue 
for motif-finding problem, computation time is another issue 

needs to be aware when target sequences are long. They can be as 
large as 3000 base pairs (bps) since potential motif can be from –
2000 bp upstream to +1000 bp downstream. Hence, motif 
identification on a large dataset with long sequences could lead to 
intensive computation if using exhaustive search method, such as 
the Gibbs sampling based approach. To test whether the genetic 
algorithm can gain computation time advantage over other 
algorithms in such case, we compared the execution time of 
MDGA and Gibbs sampling based program AlignACE. Based on 
the fact that the MDGA program with 2000 generations could 
accurately predict the AZF1 dataset in most cases, we measured 
the computation time of MDGA under this generation.  In 
addition, we measured and recorded the execution time of the 
AlignACE program under the same conditions. Our experiments 
show that, averaged over 30 experiments, computation time was 
13.0 seconds for the MDGA program, while it was 20.5 seconds 
for the AlignACE program as shown in Figure 4. T-test shows 
that the execution time is significant different between MDGA 
and AlignACE. The ½ speedup of MDGA shall be useful for 
motif identification in a large dataset containing long target 
sequences. 
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Figure 4: Comparison of computation time between MDGA 
and AlignACE on AZF1 binding site datasets. T-test shows 
that the execution time between MDGA and AlignACE is 

significant different at p <0.00001. 

4. CONCLUSION 
We have observed from our initial experiments that MDGA is 
capable of achieving better prediction accuracy than other 
approaches such as Gibbs Sampler, which explores the search 
space using a Gibbs sampling algorithm. It is not surprising that, a 
genetic algorithm based approach is capable of achieving higher 
prediction accuracy since; in general, the genetic algorithm 
explores search spaces with a strategy better than that of the Gibbs 
sampling approach. Another possible advantage of MDGA over 
the other approaches is its shorter running time when target 
sequences contain a large number of nucleotides. For example, for 
a single iteration, Gibbs sampling based program AlignACE needs 
to exhaustively evaluate the alignment scores of all possible short 
subsequences on a given target sequence and the running time 
thus increases exponentially with the length of the target 
sequences. In contrast, the MDGA does not perform exhaustive 
search during the evolution and its running time remains 
independent of the target sequence length. However, we expect 
the need for a slight increase in population size to avoid the 
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degradation of prediction accuracy when target sequences become 
very long. 

Moreover, MDGA follows the generic framework of a genetic 
algorithm and therefore its performance can probably be improved 
using more intelligent operators for crossover and mutation. On 
the other hand, the fitness evaluation may also be improved if we 
are able to additionally incorporate terms that reflect the structural 
similarities among motifs.  In addition, more experiments to 
compare the performance of MDGA with that of other approaches 
could be useful. 

Currently, most of the computational approaches for binding site 
prediction do not consider the statistical interdependence of 
nucleotides within a binding site. The statistical interdependence, 
however, can be biologically important and it is therefore 
interesting to study its possible effect on the mechanisms of gene 
transcription. Approaches based on evolutionary computation can 
possibly reveal this type of effect since the selection process in an 
evolutionary computation is likely to be similar to that in the long 
evolutionary history of a biological gene. 

MDGA identifies motifs based on the assumption that each 
sequence contains a motif. This assumption might not be the case 
in reality since there could be zero to more motifs for each target 
sequence. The motif identification problem could become more 
challenging if there are only a limited number of homologous 
sequences available for comparison, or sequence similarity of the 
selected homologous sequences is reduced.  Completely different 
strategies for crossover and mutation may need to be designed for 
binding site predictions in such situations. 
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